Central limit theorems for random polygons in an arbitrary convex set

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limit Theorems for Random Convex Polygons

Consider the set Ln of convex polygons Γ with vertices on the integer lattice Z, non-negative inclination of the edges and fixed endpoints 0 = (0, 0) and n = (n1, n2). We study the asymptotic properties of the ensemble Ln, as n1, n2 →∞, with respect to a certain parametric class of probability distributions Pn = P (r) n (0 < r <∞) on the space Ln (in particular, including the uniform distributi...

متن کامل

Central Limit Theorems for Random Polytopes in a Smooth Convex Set

Let K be a smooth convex set with volume one in R. Choose n random points in K independently according to the uniform distribution. The convex hull of these points, denoted by Kn, is called a random polytope. We prove that several key functionals of Kn satisfy the central limit theorem as n tends to infinity.

متن کامل

Central Limit Theorems for Dependent Random Variables

1. Limiting distributions of sums of 'small' independent random variables have been extensively studied and there is a satisfactory general theory of the subject (see e.g. the monograph of B.V. Gnedenko and A.N. Kolmogorov [2]). These results are conveniently formulated for double arrays Xn k (k = 1, . . . , kn ; n = 1, 2, . . . ) of random variables where the Xn k (k = 1, . . . , kn), the rand...

متن کامل

Central Limit Theorems for Random Polytopes

Let K be a smooth convex set. The convex hull of independent random points in K is a random polytope. Central limit theorems for the volume and the number of i dimensional faces of random polytopes are proved as the number of random points tends to infinity. One essential step is to determine the precise asymptotic order of the occurring variances.

متن کامل

Quenched Central Limit Theorems for Random Walks in Random Scenery

When the support of X1 is a subset of N , (Sn)n≥0 is called a renewal process. Each time the random walk is said to evolve in Z, it implies that the walk is truly d-dimensional, i.e. the linear space generated by the elements in the support of X1 is d-dimensional. Institut Camille Jordan, CNRS UMR 5208, Université de Lyon, Université Lyon 1, 43, Boulevard du 11 novembre 1918, 69622 Villeurbanne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 2011

ISSN: 0091-1798

DOI: 10.1214/10-aop568